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The notion of the coexistence in the quantum framework of causality forward 
or backward in time is proposed as a possible way for solving the problem 
of measurement. 

We shall explore the possibility of the coexistence in the quantum 
framework of the mutually exclusive alternatives of  forward or backward 
causality, a notion which appears to be closely related to the problem of 
measurement. It should be anticipated that this work is preliminary in charac- 
ter, and is based on analogies, ad hoc assumptions, and on the consideration 
of correlation or symmetry, n o t  on a dynamical view. 

We shall avail ourselves of  the interplay between b a s i c  physical consider- 
ations and logical/computational ones. Let C be a computer with input/ 
output SI, S 2 ranging over +,  - .  Either S~ o r  S 2 can be the input; the other 
correspondingly is the output. Causality goes of course from input to output, 
thus from $1 to $2, o r  (mutually exclusive here and in the following) from 
$2 to Sl. The c o m p l e t e  d e s c r i p t i o n  of a possible behavior of C is (I) $1 = 
+ ( - )  c a u s e s  $2 = - ( + )  o r  $2 = - ( + )  c a u s e s  Sl = + ( - ) .  If  it is not 
stated outside of statement (I) that C is logically reversible, the second part 
of (I) (after the or) is not redundant, e.g., it could be instead $2 = - (+ )  
c a u s e s  S~ = - (+) .  We assume that statement (I), as it is, can be applied 
to mutual causality between the eigenstates of compatible attributes of  a 
steady state, a notion from quantum steady computation (Castagnoli and 
Rasetti, 1993), and to causality between past and future of the evolution of 
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a closed system which undergoes state vector reduction [from the preparation 
I tb(t~)) to the state at the outcome of measurement lt~(t2))], as follows. Let 
I t~C(tl)) and I t~<'(t2)), with c = f, b, be independent ket variables spanning 
the possible system states at times tj and t2 > tl: (II) For every Itbf(tl)) and 
I~b(tz)), I tlsf(tl)) causes I t~f(t2)) = Uflt~.f(tl)) or I~b(t2)) causes ItCh(t0) = 
(Ub)-I I t~b(t2)), where, up to a phase factor  (as clarified in below), U f or U b 
is the unitary transformation undergone by the deterministic (without state 
vector reduction) evolution from tl to t2. We assume that the second part of 
(II) is not redundant since, on one hand, a process which undergoes state 
vector reduction is not reversible in character, and on the other hand we 
require that, f o r  each individual evolution, in the time-reversed picture the 
system (up to overall phase) reruns backward the same evolution it ran 
forward [which is what (II) says]. For example, omitting the second part of 
(II) brings in the paradox (Penrose, 1986) that a photon reflected by a half- 
silvered mirror could in the time-reversed picture be transmitted in contradic- 
tion with its previous history. We also assume that the two parts of statement 
(II) [or (I)], which are logically mutually exclusive, are mapped onto a pair 
of components of a quantum superposition which maps the complete statement 
(and will reconcile the initial state with the final one after reduction). The 
foregoing will be applied to an entangled state, then applied by analogy to 
temporal causality. 

Given the spin singlet state I t b) = ( l / ~ f 2 ) ( l + ) l l - ) 2 - i - ) l l - t - ) 2 ) e  i~~ Si 
and $2 play the role of the spin eigenvalues of particles 1 and 2. We assume 
that the complete statement (I) corresponds to the completely defined (pure) 
state t tb) [causal implications between the eigenstates of compatible attributes 
of a steady state are outside time and do not need to be logically reversible, 
they can map irreversible gates (Castagnoli and Rasetti, 1993)]. Let 0 be the 
angle between the direction of particle 1 spin and that of spin +, and Hi = 
span{ I+)i, I-)i} the Hilbert space of the spin of particle i. We introduce 
II~J)i = COS ~b I + ) l  + sin + I - - ) i  , IqS)2 = - s in  + 1+)2  + COS d) 1--)2 as the 
stochastic descriptions of the individual spin states of particles t and 2, with 
~b = 0/2 a stochastic variable with uniform distribution in [0, 2w]. 0 is a 
hidden stochastic variable. Averaging over ~b brings us from the stochastic 
to the conventional representation: (Ix It)i)+ = 0 means the absence of a 

- -  1 (defined) spin state of particle i, whereas ( [~I/>i<'k!)'t >6 2 
(I +)i(+ I + I--)i(-- [). Thus I T)i stochastically represents the mixture, with 
even weights, of all possible spin directions of particle i. We can represent 
I~)l  (Iq~)2) in H = Hi |  by using the causal implications of the first 
(second) part of (I): 

Iq~)~ ~ e'a"2lq'~'2) = e/am( cos +l +)l 1-)2 + sin ~b I->l 1+)2) 

Iqr)2 ~ e i~2'' Iq t2'') = ei~2'l(cos cb I "l")l 1--)2 -- sin qb I-->l 1+)2) 
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We assume that (i) I xI/'1'2) (I xIy2'l)) is the stochastic representation of the state 
of both particles corresponding to the first (second) part of (I); thus to one- 
way causality from 1 to 2 (2 to 1); (ii) both states coexist in superposition 
for a suitable definition of ~:,2 and ~2,1; and (iii) such a superposition maps 
the complete statement (I) and is therefore the stochastic description of IW): 

I xp') = (pei~l,2 I~.r) 1,2 -q- pei~2,11%I$)2,:)d~ 

The p's are weights identical because of symmetry. This yields p = 1, ~,2 
= +, 3 z,~ = qb + rr/2 (up to a rotation of all phases) and the following 
consequences: First, 

I ( e i + l * ) l ' 2 ) + l  z + I ( e i ( + ~ / 2 > [ * ) z " ) + l  z = 1 

Second, by permuting the two particles and changing ~b into ~b +__ rr/2 (which 
is stochastically equivalent), the stochastic states ei+l~) 1'2 and ei('~+-'~/2) lXI~)2't 
change into one another, are therefore stochastically indistinguishable. This 
is in agreement with the fact that (I) [like (II)] induces a recursion: $1 = 
+ ( - )  causes $2 = - (+),  which causes $1 = + ( - ) ,  etc. Causality from 
1 to 2 or 2 to 1 is not distinguishable, is mutual. By using such "consequences" 
as "conditions" instead, I~)i can be introduced as the generic vector of Hi. 
Applying the relevant conditions brings us from "generic" to "stochas- 
tically defined." 

Going to mutual causality in time evolutions, we do not have to introduce 
a stochastic description of I t~(tl)) and I t~(t2)), which are pure states. Stochastic 
character will appear at the level of the components into which the complete 
evolution I +(t)) [corresponding to (II)] will be decomposed: a forward (back- 
ward) evolution associated with causality from t~ to t2 02 to fi) and correspond- 
ing to the first (second) part of (II). The former equations become 

[t~(t)) = ei~flt~f(t)) + ee~l+b(t)), l]t~f(t))[ 2 + Ilt~,,(t))I 2 = 1 (1) 

The average over + is dropped and weights are incorporated into the evolu- 
tions. The latter equation should represent the mutual exclusivity of the two 
parts of (II). Assumptions/rules are as follows: (a) I t~f(t)) and I qJb(t)) are 
introduced with generic initial (or final) amplitudes (on the basis vectors of 
H) and follow the transformations of the deterministic evolution, which, 
freed from the initial condition [to be applied to I+(t))], is taken as a model 
of one-way causality. Consequently F 2 = I[~f(t))l 2 and B 2 --- I tOb(t))12 
remain constant along t; (b) for every t~ 4: t2, ~t,, ~(2, ~b, and ~2 are introduced 
as free independent phases; thus, if U is a transformation of the conventional 
evolution, the corresponding transformation U r (U b) of the forward (back- 
ward) evolution is 

U f = e iJ  U (U b = ei~l'U) 
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where 8 f and 8 b are independent of  one another; (c) 8 .1' and 5 b are independent 
of  the initial amplitudes of the corresponding evo lu t ions - -due  to the linearity 
of  transformations; (d) [exp(iS.() r bf( t ))  and [exp(i3))] I bh(t)) are stochastically 
indistinguishable; (e) normalization, both the initial and final conditions are 
applied to the complete evolution I b(t) ). After the application of  all the 
relevant conditions, the free independent variables will become correlated 
stochastic variables. 

We shall exemplify the application of  the model in question. Consider 
a spin-l /2 particle emerging from a spin filter rotated by q~ with respect to 
a S te rn-Ger lach  device (SG) with detectors A and B at its two outputs. By 
denoting I S)ythe tensor product I qby(X)) IS), where I qbr(X)) are the normalized 
wave functions localized in the disjoint regions Y = input I, detector A, and 
detector B, and IS) is the spin ket, the states at the input I and at the output 
O are conventionally 

]bC), = cos ~p 1+)~ + sin q~ [ - ) l  -+ [bC)o 

= "q+ cos ~p [+)A + "q- sin ~p I--)B 

where "q+ and "q_ are phase factors. Such deterministic input-output  "evolu- 
tion" is substituted by the couple of  evolutions 

[bY), = f+[ +)I + f - [ - ) I  -+ [bS)o = qqf(qq+f+ [ +)A + "q-f-]  --)~) 

[bb)i = b+l+)r + b _ [ - ) , - +  [bb)o = "qb('q+b+[ +)A + ~q_b_[-).) 

where f z ,  b+ are "generic" amplitudes, . q s =  exp(iSf) and .qb = exp(iSt,). 
The  complete evolution is I b)1 = 10/), + I bb)l --+ I b)o  = J bf )o  + f bb)o �9 
The second of  equations (1) on the forward/backward evolutions and normal- 
ization on the complete evolution yield 

C O S ( ~ f  + __ y b + ) / C O S ( , y f  + - -  y b  _[_ 8 f _  8b)  

= c o s ( , v f  - _ , ~ b ) / c o s ( y . f  - _ , yb  ..[_ 8 f _  8 b )  

where yf_+ and yb  are the phases of  f_+ and b+. Rule (c) requires that the 
above equation is an identity, yielding 8 f = 8 b (U  f = U b) or 8 f = 8 b _+ ~r 
(uS = --Ub). 

Now, q~ ~ 0 (or q~ v~ w) requires 8 f = - 8  b. Assuming the final condition 
- -  l that A clicks yields f+ = �89 q~ + ~q), b+ = �89 q~ - qq), f_  = b_ 2 

sin q~, where ~i = e '~ and 8 is a free phase, 

[ b ) I  = c o s  ~p [q-)I @" sin ~p [--)I--+ ]b)O = ~q'[ + )  

where "q' = ~q'qf'q+, F 2 = i i B 2 _ i _ i -~ + ~ cos q~ cos 5, 2 2 cos q) cos 8. The 
condition q~ =~ 0 implies F z, B 2 v ~ 0 and indistinguishability requires 8 to 
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be a stochastic variable with uniform distribution in [0, 2v]. The forward 
and backward evolutions acquire a stochastic character. State vector reduction 
(or equivalent thereof) is localized in the region where the SG device performs 
the above input-output transformation. 

The condition ~ -- 0 allows either ~f = _~b or ~f = ~b. There can be 
either just one evolution (forward or backward) or both with F 2, B 2 stochastic 
as in the previous case with ~ = 0. 

By using as a final condition the generic spin direction qF, the extremal 
cos(~ - qS). No measurement (or ignoring values of F 2 or B 2 become �89 + y 

it) implies no backward (thus no mutual) causality, hence ~ = ~', namely 
the deterministic evolution. 

We shall outline other implications. A half-silvered mirror followed by 
two photon detectors requires ~f = - 8  b and mutual causality, which prevents 
the aforementioned paradox. Measurement correlations in, say, spin singlet 
states can be modeled on the basis that the spin direction determined by the 
first measurement causes backward in time the (opposite) spin direction of 
the other particle. Mutual definition between the quantum process and the 
result of measurement of Bohr's interpretation, by changing "definition" into 
"causality," becomes causality from process to result--forward in t ime--or  
from result to process--backward in time. Mutual causality, when the process 
is a computational one and the result is the solution of a problem, appears 
to be at the heart of the notion of nondeterministic computation in both 
quantum steady computation (Castagnoli, 1991; Castagnoli et al., 1992; Cas- 
tagnoli and Rasetti, 1993) and quantum parallel computation (Deutsch et al., 
1992; Shor, 1994). That causality along closed timelike lines might yield 
nondeterministic computation appears in Deutsch (1991). Implementing such 
a form of computation might be the way to verify the existence of mutual 
causality. 
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